

Web API Endpoint Reference

Version 2023.001

Contents
Web API Endpoint Reference .. 1

Authentication: ... 1

Method 1: ... 1

Method 2: ... 1

ID fields: .. 2

Response Codes .. 2

Request Parameters .. 3

Throttling .. 3

Overview ... 3

Pagination ... 4

Response ... 4

Field List & Mandatory Fields by Retailer ... 6

Get Purchase Order from Spring ... 7

Request Parameters Filters ... 7

Request Parameters Qualifiers ... 7

Request Parameters Format ... 7

Endpoint .. 8

XSD – Collect Purchase Order from Spring ... 8

Sample Data .. 8

Send Purchase Order to Spring ... 8

Endpoint .. 8

XSD – Send Purchase Order to Spring ... 8

Sample Data .. 8

Get Ship Request (940) from Spring ... 9

Request Parameters .. 9

Request Parameters Qualifiers ... 9

Request Parameters Format ... 10

Endpoint .. 10

XSD – Collect Ship Request (940) from Spring .. 10

Sample Data .. 10

Send PO Acknowledgement to Spring .. 10

Endpoint .. 10

PO Acknowledgement from Spring ... 10

Sample Data .. 10

Get PO Acknowledgement from Spring .. 11

Endpoint .. 11

PO Acknowledgement from Spring ... 11

Sample Data .. 11

Send Shipment to Spring ... 11

Usage Notes .. 11

Purchase Order Level .. 11

Item Level .. 11

Trigger outgoing transaction ... 12

Mandatory Fields .. 13

Endpoint .. 14

XSD – Send Shipment to Spring .. 14

Sample Data .. 14

Generate Shipping Documents from Spring ... 14

Usage Notes .. 14

Endpoint .. 14

Sample Data .. 14

Get Shipment from Spring .. 15

Endpoint .. 15

XSD – Send Shipment to Spring .. 15

Sample Data .. 15

Usage Notes .. 15

Send Invoice to Spring... 15

Usage Notes .. 15

Purchase Order Level .. 15

Invoice Item Data .. 15

Invoice Numbering .. 16

Consolidated vs. Non-Consolidated Invoices .. 16

Mandatory Fields .. 16

Endpoint .. 16

XSD – Send Invoice to Spring .. 16

Sample Data .. 17

Get Invoice from Spring .. 17

Endpoint .. 17

XSD Invoice from Spring .. 17

Sample Data .. 17

Product Catalog ... 17

Usage Notes .. 17

XSD – Product Catalog .. 17

Sample Data .. 17

Endpoint .. 18

Product Inventory ... 18

Usage Notes .. 18

XSD – Product Inventory ... 18

Sample Data .. 18

Endpoint .. 18

Appendix I – Auto Delivery of Shipping Documents ... 19

Usage Notes .. 19

Delivered Within the 940 .. 20

Returned As a Response to a 945 or an Ad-Hoc Request ... 21

Examples - Returned As a Response to a 945 or an Ad-Hoc Request ... 22

Appendix II – Carton Numbering .. 23

What is a GS1 prefix? .. 23

What is a GS1-128 / SSCC / SSCC-18 / Serial Shipping Container Code .. 23

Appendix III – API Response Codes ... 25

Spring Systems Page 1 www.springsystems.com

Web API Endpoint Reference

Our Web API endpoints give external applications access to Spring Systems transactional data.

Usage of web API’s is much preferred over file based integration.

While most transactions are supported in both directions, we find it most efficient for the transaction

originator to initiate the call. E.g. while we support an external party calling into our system to ‘Get Ship

Request (940) from Spring’, we have found it faster and more efficient for our system to instead push

the Ship Request (940) out to the receiving system (e.g. your WMS). Our system is the originator of the

Ship Request (940) transaction so it is faster if we immediately push it out to the WMS (warehouse

management system). Similarly, we prefer for the WMS to push back to us the completed shipment.

Web API Base URL:

PRODUCTION https://portalapp.springsystems.com/api/

TEST https://portalapp-staging.springsystems.com/api/

OPERATION DESCRIPTION ENDPOINT

Collect Purchase Order from

Spring

Returns order data based on the values that you

specify.

/po-outgoing/export

Send Shipment to Spring Creates a Shipment within the Spring Systems

Portal.

/api/ship-

incoming/send

Send Invoice to Spring TBD TBD

Authentication:

Method 1:

https://api_user@api_key:<insert endpoint here>

example: https://api_user@api_key:portalapp.springsystems.com/api/po-outgoing/export

Method 2:

https:// <insert endpoint here>/api_user/usernamegoeshere/api_key/keygoeshere

example: https://portalapp.springsystems.com/api/po-outgoing/export/api_user

/usernamegoeshere/api_key/keygoeshere

Spring Systems Page 2 www.springsystems.com

ID fields:
Throughout our data, you will see ID and KEY fields (xxxxx_ID -and- xxxx_KEY). These are internally

assigned identification numbers given by our system to a particular object (e.g. a vendor, a location, a

purchase order, etc). These are Spring Systems internally assigned values which you would receive

from our system, e.g. on a Purchase Order. You can use these ID’ or KEY’s to very distinctly identify an

object when communicating with our system. If you don’t know the ID or KEY of the object, you can

identify it back to us using a combination of other fields.

(NOTE: xxx_id are numeric (auto-incremented), xxx_key are auto-generated strings)

Response Codes
It is the sender’s responsibility to verify that each API call receives a successful 200 level response.

Below is an excerpt from https://developer.mozilla.org and https://restfulapi.net

Web API’s typically use the Status-Line section of an HTTP response message to inform clients of their

request’s overarching result.

HTTP defines these standard status codes that can be used to convey the results of a client’s request.

The status codes are divided into the five categories.

• 1xx: Informational – Communicates transfer protocol-level information.

• 2xx: Success – Indicates that the client’s request was accepted successfully.

• 3xx: Redirection – Indicates that the client must take some additional action in order to

complete their request.

• 4xx: Client Error – This category of error status codes points the finger at clients.

• 5xx: Server Error – The server takes responsibility for these error status codes.

Spring systems follows this approach. As with all API communications, it is the responsibility of the

sending system to ensure that every call receives a successful 200 level response. Spring Systems

does not log non successful transactions.

Examples of successful transactions:

Status: 200 OK

 <messages>Invoices(s) successfully saved</messages>

 <success>1</success>

 <transaction>

 <transaction_key>810609189d9f1993</transaction_key>

 <transaction_created>2021-05-04 13:52:27</transaction_created>

 <transaction_additional>

 <attributes/>

 </transaction_additional>

 </transaction>

Spring Systems Page 3 www.springsystems.com

Examples of failed transactions:

Status: 401 Unauthorized (401)

{"errors":["Invalid API credentials. Invalid data passed"]}

Status: 400 Bad Request (400)

<?xml version="1.0" encoding="UTF-8"?>

<pos>

 <errors>Vendor is a required field and is empty or null</errors>

</pos>

Status: 400 Bad Request (400)

<?xml version="1.0" encoding="UTF-8"?>

<shipments>

 <errors>Your request is missing filter data. Please send filter parameters with your

request</errors>

</shipments>

Request Parameters
When making a web service call, please pass along any variables or settings within the call. Some

variables are mandatory such as api_user or api_key, or Request Parameters Filters such as show below

in the Get Purchase Order from Spring example. Additionally some settings or limits can be overridden

via an API call as well. Please try overriding such settings by simply passing the setting within the call

for example setting.name/value (e.g. pagination.limit/x) within the call to override.

Throttling

Overview

Spring Systems PortalApp uses an API throttling to ensure availability and consistent throughput. Please

make sure you are transmitting more than one transaction per API call to avoid any throttling issues.

• Request Limit - This is the number of API calls allowed per Request Time Period. Default setting

is 500 requests (calls) per 86400 seconds (24h)

• Request Time Period - Default setting is 86400 seconds (24 hours)

• Transaction Limit - Default limit is 5,000 created or updated transactions per period.

• Requested Entities Limit - This applies to get requests only and controls the number of

transactions or item returned per Request Time Period. For example, when requesting orders or

items, please use filters to limit the number of possible results in your API query. Default is

50,000. (also see pagination)

• Burst Time Period - Default is 1 call per 1 sec

Spring Systems

In addition to the traditional limits detailed above, Spring also utilizes a “Leaky Bucket” approach to

further allow burst calls, yet control the pace of these bursts.

• Leaky Bucket Capacity – Each api_user has a “bucket capacity” per endpoint. The default

capacity is 100. The bucket starts with 0 calls. Each call adds one to the bucket. When the

bucket is full, no further calls will be allowed.

• Leak per second – each bucket will remove one per second to rebuild the allowed call count.

If these limits are reached, your API user will be prevented from making additional calls until the

subsequent time period and/or appro

transmitting more than one transaction per API call

issues.

Please try to schedule and design your API calls to stay within these limits. Conta

manager if you find the need to extend these limits (additional charges may apply)

extended when API calls are being made with

Pagination

Spring Systems uses the API cursor approach

response will include the total records

limit up to the max limit which is also provided).

When the total results exceed the limit

system may create the appropriate

with a pre-built URL if you find that easier.

You may override the per page quantity up to the max value. To do so, simply

within the call to override.

Response

Throttling and Pagination detail is provided within the response header. Pagination detail is provided in

both the response body and header.

Body Response Example: No Pagination

Page 4 www.springsystems.com

In addition to the traditional limits detailed above, Spring also utilizes a “Leaky Bucket” approach to

burst calls, yet control the pace of these bursts.

Each api_user has a “bucket capacity” per endpoint. The default

capacity is 100. The bucket starts with 0 calls. Each call adds one to the bucket. When the

rther calls will be allowed.

each bucket will remove one per second to rebuild the allowed call count.

If these limits are reached, your API user will be prevented from making additional calls until the

appropriate limit is reached. Once again, please make sure you are

more than one transaction per API call to avoid any throttling and transmission limit

Please try to schedule and design your API calls to stay within these limits. Contact your account

manager if you find the need to extend these limits (additional charges may apply). Limits

made with only one transaction per call.

API cursor approach for pagination when making get requests. Your initial API

total records to be returned as well as the default limit. (You may override this

which is also provided).

limit, you will also be presented with the next cursor

appropriate URL to obtain the next page of results. You will also be presented

URL if you find that easier.

You may override the per page quantity up to the max value. To do so, simply pass pagination.limit/x

Throttling and Pagination detail is provided within the response header. Pagination detail is provided in

both the response body and header.

Example: No Pagination:

www.springsystems.com

In addition to the traditional limits detailed above, Spring also utilizes a “Leaky Bucket” approach to

Each api_user has a “bucket capacity” per endpoint. The default

capacity is 100. The bucket starts with 0 calls. Each call adds one to the bucket. When the

each bucket will remove one per second to rebuild the allowed call count.

If these limits are reached, your API user will be prevented from making additional calls until the

lease make sure you are

to avoid any throttling and transmission limit

ct your account

. Limits cannot be

ts. Your initial API

. (You may override this

next cursor so that your

. You will also be presented

pass pagination.limit/x

Throttling and Pagination detail is provided within the response header. Pagination detail is provided in

Spring Systems Page 5 www.springsystems.com

 <response_metadata>

 <pagination>

 <total_records>1</total_records>

 <total_pages>1</total_pages>

 <limit>25</limit>

 <max_limit>100</max_limit>

 <next_cursor/>

 </pagination>

 </response_metadata>

Body Response Example: Yes Pagination:

 <response_metadata>

 <pagination>

 <total_records>29</total_records>

 <total_pages>2</total_pages>

 <limit>25</limit>

 <max_limit>100</max_limit>

 <next_cursor>eyJwb19pZCI6MjczODE3fQ</next_cursor>

 <next_page>http://portalapp-staging.springsystems.com/api/po-

outgoing/export/po.filter.gt.po_id/273788/pagination.next_cursor/eyJwb19pZ

CI6MjczODE3fQ</next_page>

 </pagination>

 </response_metadata>

Body Response Example: Throttle Limit Reached:

 "errors": [

 "Rate limit exceeded"

]

Body Response Example: Burst Time Limit Exceeded:

 "errors": [

 "Too many requests"

]

Header Response Example:

Spring Systems Page 6 www.springsystems.com

Field List & Mandatory Fields by Retailer

Please follow this line for a list of:

• PortalApp Attributes – first tab in sheet

• Retailer Mandatory Fields (required fields vary by retailer) – 2
nd

 tab in sheet.

List can be accessed at:

https://docs.google.com/spreadsheets/d/15ctAyYUw0IKGiUb0abqZGYjgh4P1i4nhVooSnzG75N0/

Please notify integration@springsystems.com if you find any missing fields. Sometimes new data is

added by a retailer without our knowledge. This will be passed with the transaction data but not yet

defined and documented in our system. Thank you for your help!

Spring Systems Page 7 www.springsystems.com

Get Purchase Order from Spring

Request Parameters Filters

 Can filter on any of these. At least one is mandatory.

po_created

po_updated

po_num

po_rel_num

po_acknowledge_status

po_ship_status

po_invoice_status

po_ship_open_date

po_ship_close_date

po_id

vendor_id

retailer_id

mark_for_location_id

ship_to_location_id

po_original_num

po_type

Request Parameters Qualifiers

eq equal

neq not equal

lt less than

lte less than or equal

gt greater than

gte greater than or equal

like like

nlike not like

in in

nin not in

Request Parameters Format

Usage of one or more parameter qualifiers is mandatory.

po.filter.<qualifier>.<value>

Spring Systems Page 8 www.springsystems.com

example using more than one parameter...

https://api_user@api_key:portalapp.springsystems.com/api/po-

outgoing/export/po.filter.gt.po_created/2017-09-01T00:00:00Z/po.filter.lt.po_created/2017-09-

25T14:28:35-0500

Endpoint

Get POs: /api/po-outgoing/export

XSD – Collect Purchase Order from Spring

https://portalapp.springsystems.com/xsds/transactions/850/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/850/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/850/general.json

Send Purchase Order to Spring

Endpoint

Create POs: /api/po-incoming/send

XSD – Send Purchase Order to Spring

https://portalapp.springsystems.com/xsds/transactions/850/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/850/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/850/general.json

Spring Systems Page 9 www.springsystems.com

Get Ship Request (940) from Spring

While most transactions are supported in both directions, we find it most efficient for the transaction

originator to initiate the call. E.g. while we support an external party calling into our system to ‘Get Ship

Request (940) from Spring’, we have found it faster and more efficient for our system to instead push

the Ship Request (940) out to the receiving system (e.g. your WMS). Our system is the originator of the

Ship Request (940) transaction so it is faster if we immediately push it out to the WMS (warehouse

management system). Similarly, we prefer for the WMS to push back to us the completed shipment.

Request Parameters

 Can filter on any of these. At least one is mandatory.

shipment_created

shipment_updated

po_num

shipment_num

shipment_ship_status

shipment_ship_open_date

shipment_ship_close_date

shipment_id

vendor_id

retailer_id

ship_to_location_id

Request Parameters Qualifiers

eq equal

neq not equal

lt less than

lte less than or equal

gt greater than

gte greater than or equal

like like

nlike not like

in in

nin not in

Spring Systems Page 10 www.springsystems.com

Request Parameters Format

Usage of one or more parameter qualifiers is mandatory.

shipment.filter.<qualifier>.<value>

example using more than one parameter...

https://api_user@api_key:portalapp.springsystems.com/api/ship-request-

outgoing/export/ship_info.filter.gt.ship_info_created/2017-09-

01T00:00:00Z/ship_info.filter.lt.ship_info_created/2017-09-25T14:28:35-0500

Endpoint

Get Shipments: /api/ship-request-outgoing/export

XSD – Collect Ship Request (940) from Spring

https://portalapp.springsystems.com/xsds/transactions/940/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/940/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/940/general.json

Send PO Acknowledgement to Spring

Endpoint

Create Acknowledgements: /api/acknowledgement-incoming/send (under construction)

PO Acknowledgement from Spring

https://portalapp.springsystems.com/xsds/transactions/855/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/855/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/855/general.json

Spring Systems Page 11 www.springsystems.com

Get PO Acknowledgement from Spring

While most transactions are supported in both directions, we find it most efficient for the transaction

originator to initiate the call. E.g. while we support an external party calling into our system to ‘Get PO

Acknowledgement from Spring’, we have found it faster and more efficient for our system to instead

push the PO Acknowledgement out to the receiving system

Endpoint

Get Acknowledgements: /api/acknowledge-outgoing/export (under construction)

PO Acknowledgement from Spring

https://portalapp.springsystems.com/xsds/transactions/855/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/855/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/855/general.json

Send Shipment to Spring

Usage Notes

Please provide as much data as possible about the Shipment and the Purchase Orders. At a minimum,

we need to identify the Purchase Order and the Items.

Purchase Order Level

Purchase Orders for your shipment must already exist in our system. In order for us to identify

the Purchase Order(s) in your shipment, you must provide back to Spring Systems either our

<po_id> (given to you in the initial PO data), or retailer_id, retailer:tp_name, and po_num.

Note that po_rel_num, mark_for_location:tp_location_id, and/or

mark_for_location:tp_location_code are also mandatory if they are used for a particular PO.

Item Level

Items for your shipment should already exist in our system and in your Purchase Order. In order

for us to identify the Items(s), you must provide back to Spring Systems either our:

Spring Systems Page 12 www.springsystems.com

 po_item_id or…..

our product_id or…..

product:product_additional:identifiers:gtin or…..

product:product_additional:vendor_item_num (Must be unique. Only

use if you do not have a GTIN.

These items would have been given to you in our initial Purchase Order data.

Trigger outgoing transaction

Please always indicate whether to trigger subsequent outgoing transactions such as sending an

Advanced Ship Notice (ASN/EDI856) by passing a value of 1 within the tag:

<send_outgoing_transaction_after>

 Passing an empty tag will indicate to not trigger subsequent transactions.

Updating a preexisting shipment

 If the Spring Systems <ship_info_id> tag is provided and matches an existing shipment

then the shipment with that specific id will be updated. If <ship_info_id> is not provided,

then a new shipment will be created.

Update carton level

If a carton number is provided, this will update that carton, such as changing the contents or

quantity. To remove a carton from a shipment, pass the tag delete_carton_flag with a value of

1 within the ship carton section. This will remove that carton from the shipment. Example:

<ship_carton>

<delete_carton_flag>1</delete_carton_flag>

</ship_carton>

Externally Assigned Carton Numbers

Maintaining the uniqueness ship_carton_number is a critical concept, and especially

important for GS1-128 labels and EDI ASN’s (856). External systems that are sending shipment

data to PortalApp can provide these numbers or can request PortalApp to generate these

numbers for them. If external system will be assigning carton numbers, these fields are

mandatory:

ship_carton:ship_carton_number (must NOT include check digit)

ship_carton:warehouse_carton_number

ship_carton:warehouse_carton_number_has_checkdigit

Spring Systems Page 13 www.springsystems.com

Do not include the check digit when passing ship_carton_number to PortalApp. Failure to

properly do this will risk duplication of carton numbers and incorrect labels if a user attempts to

re-print labels from PortalApp.

If external system will be assigning carton numbers, PortalApp needs to know exactly what label

number was printed on the GS1-128 label and whether this number already includes a check

digit.

Third party applications can provide carton numbers to PortalApp (ship_carton_number)

or this could be left blank and PortalApp will generate a carton number. If PortalApp generates

the carton number, however, the third party application must store this number as it will be

mandatory for processing a carton update or delete procedure.

For more detail refer to Appendix.

Request Shipping Documents

This endpoint can also be used to request shipping documents from Spring Systems. See

“Appendix I – Auto Delivery of Shipping Documents” for more information.

Mandatory Fields

Once the Purchase Order and Items have been identified, you must of course also provide all mandatory

shipment information (retailer dependent) such as

ship_info:ship_info_ship_date

ship_info:ship_info_delivery_date

ship_info:ship_info_carrier_name

ship_info:ship_info_carrier_scac

ship_info:ship_info_carrier_code

ship_info:ship_info_tracking

ship_info:bill_of_lading

ship_info:master_bill_of_lading

ship_info:load_number

ship_info:trailer_number

ship_info:seal_number

ship_info:ship_pay_method

ship_info:weight.value (and/or carton weight)

ship_info:weight.units_of_measure (and/or carton weight)

ship_info:ship_to_location_id

ship_info:ship_to_location (all necessary detail)

Spring Systems Page 14 www.springsystems.com

ship_info:ship_from_location (all necessary detail)

ship_carton:ship_carton_number

ship_carton:warehouse_carton_number

ship_carton:warehouse_carton_number_has_checkdigit

ship_carton:po_item_pack:po_item_pack_qty

mark_for_location:tp_location_id -and/or-

mark_for_location:tp_location_code

And anything else that may be required on the ASN for that particular Trading Partner.

Endpoint

Create Shipments: /api/ship-incoming/send

XSD – Send Shipment to Spring

https://portalapp.springsystems.com/xsds/transactions/856/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/856/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/856/general.json

Generate Shipping Documents from Spring

Usage Notes

This endpoint can be used to request shipping documents from Spring Systems. See “Appendix I – Auto

Delivery of Shipping Documents” for more information.

Endpoint

Generate Shipment Docs /api/ship-docs/generate

Sample Data

https://portalapp-staging.springsystems.com/xsds/transactions/856/general.xsd

Spring Systems Page 15 www.springsystems.com

Get Shipment from Spring

Endpoint

Get Shipments: /api/ship-outgoing/export

XSD – Send Shipment to Spring

https://portalapp.springsystems.com/xsds/transactions/856/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/856/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/856/general.json

Usage Notes

Similar types of Request Parameters and Request Parameters Qualifiers as specified earlier also apply

for this endpoint.

Example

https://portalapp-staging.springsystems.com/api/ship-

outgoing/export.json/ship_info.filter.gte.ship_info_created/2020-02-10%2013:45

Send Invoice to Spring

Usage Notes

Please provide as much data as possible about the Invoice and the Purchase Orders. At a minimum, we

need to identify the Purchase Order.

Purchase Order Level

Purchase Orders for your shipment must already exist in our system. In order for us to identify

the Purchase Order(s) in your shipment, you must provide back to Spring Systems either our

po_id (given to you in the initial PO data), or retailer_id, retailer:tp_name, and po_num. Note

that po_rel_num, mark_for_location:tp_location_id, and/or

mark_for_location:tp_location_code are also mandatory if they are used for a particular PO.

Invoice Item Data

First priority, if you include detailed invoice data within the <invoice_po> and it’s child

<invoice_po_item>, this is what will be used to build the detailed invoice line item data.

Spring Systems Page 16 www.springsystems.com

Second priority, if you do not include <invoice_po_item> but do include

<invoice_ship_info>, then all relevant data including invoice line item data will be

pulled directly from the shipment.

Third priority, if you do not include either of the above, the your invoice will built directly from

the Purchase Order specified with <po>. It will be assumed that you are invoicing the PO

completely, e.g. no adjustments to quantity or price.

Invoice Numbering

If <invoice_num> is provided it will take priority. If not provided, our system will increment

by one from the last invoice number used. It will skip over any previously used invoice

numbers.

Consolidated vs. Non-Consolidated Invoices

When dealing with multi-location Purchase Orders (multiple mark for’s), most retailers prefer

non-consolidated invoices. E.g. one invoice per store (mark for location). However some

retailers mandate that you consolidate invoices by Purchase Order & Shipment (e.g. a multi-

location (mark for) Purchase Order could get one invoice per PO & Shipment. For retailers that

ask for consolidated invoices, you should list one invoice number and multiple <po_id>.

Another approach could be one invoice number and one <ship_info_id>. Note that if this

shipment contains multiple base PO numbers, we would need to split this into multiple invoices

and we would increment sequentially above the invoice number provided.

Mandatory Fields

Once the Purchase Order and Shipment and Items have been identified, you must of course also provide

all mandatory Invoice information (retailer dependent). If this detail is provided in your Invoice data,

that will take priority. If not provided in your Invoice data then we will attempt to pull the data from the

Shipment. An error will be thrown if mandatory fields are not provided and can not be pulled from the

Shipment or PO.

Endpoint

Create Invoices: /api/invoice-incoming/send

XSD – Send Invoice to Spring

https://portalapp.springsystems.com/xsds/transactions/810/general.xsd

Spring Systems Page 17 www.springsystems.com

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/810/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/810/general.json

Get Invoice from Spring

Endpoint

Get Invoices: /api/invoice-outgoing/export

XSD Invoice from Spring

https://portalapp.springsystems.com/xsds/transactions/810/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/810/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/810/general.json

Product Catalog

Usage Notes

Users can download, upload or update their product catalog using the following webservice endpoints.

XSD – Product Catalog

https://portalapp.springsystems.com/xsds/transactions/832/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/832/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/832/general.json

Spring Systems Page 18 www.springsystems.com

Endpoint

Send Product Catalog to Spring: /api/catalog-incoming/send

Receive Product Catalog from Spring:: /api/catalog-outgoing/export

Product Inventory

Usage Notes

Users can upload or update their product inventory using the following webservice endpoints.

XSD – Product Inventory

https://portalapp.springsystems.com/xsds/transactions/846/general.xsd

Sample Data

XML Sample: https://portalapp.springsystems.com/xsds/transactions/846/general.xml

JSON Sample: https://portalapp.springsystems.com/xsds/transactions/846/general.json

Endpoint

Send Product Inventory to Spring: /api/ inventory-incoming/send

Spring Systems Page 19 www.springsystems.com

Appendix I – Auto Delivery of Shipping Documents

Shipping documents can be auto generated by the Spring Systems PortalApp and delivered to a third

party application. This prevents the need for our partner applications to design the different label and

packing slip formats required by each retailer. Shipping documents can include:

• GS1-128 labels

• Logo Packing Slip

• FedEx Labels

• UPS Labels

Usage Notes

METHOD - Shipping documents can be delivered by the PortalApp three different ways:

• Delivered within the 940

• Returned as a response to a 945

• Returned as a response to an ad-hoc request

FORMAT - Shipping documents can be delivered by the PortalApp API response in two different formats:

• Unique URL to hosted PDF file, Receiving system would use your API credentials and this unique

string to build the URL.

• PDF file represented in Base64 text string. Receiving system would convert this text data back

into a PDF file.

Spring Systems

Delivered Within the 940

Internal PortalApp settings must be pre

Additionally the items within the 940 must be pre

The following sample provides several scenarios of a 940 that includes shipping documents:

Page 20 www.springsystems.com

Internal PortalApp settings must be pre-configured for a 940 to include shipping documents.

Additionally the items within the 940 must be pre-packed into the appropriate carton configuration.

The following sample provides several scenarios of a 940 that includes shipping documents:

www.springsystems.com

configured for a 940 to include shipping documents.

into the appropriate carton configuration.

The following sample provides several scenarios of a 940 that includes shipping documents:

Spring Systems

Returned As a Response to a 945 or an Ad

When sending a 945 (Send Shipment to Spring

when using the standalone “Generate Shipping Documents from Spring

settings need to be provided.

Page 21 www.springsystems.com

Returned As a Response to a 945 or an Ad-Hoc Request

Send Shipment to Spring) that needs to have shipping documents returned

Generate Shipping Documents from Spring” endpoint, specific requests and

www.springsystems.com

have shipping documents returned, or

” endpoint, specific requests and

Spring Systems Page 22 www.springsystems.com

Examples - Returned As a Response to a 945 or an Ad-Hoc Request

In all examples below, ship_carton_number can be provided or PortalApp can provide this back

to in the response. This number must be maintained for update or delete options.

Scenario 1 - Build shipment, WMS tells full packing info, send ASN now (yes, works now)

• Step 1 (e.g. first API call) - Create a shipment, WMS provides all packing, Trigger outgoing

transaction = 1; Request Shipping Documents = yes. PortalApp replies with the labels and sends

the ASN.

Scenario 2 - Build shipment, WMS tells full packing info, send ASN later

• Step 1 - Create a shipment, WMS provides all packing, Trigger outgoing transaction = 0; Request

Shipping Documents = yes. PortalApp replies with the labels, shipment number, and does not

send the ASN.

• Step 2 – Shipment update and send ASN for this specific shipment number (shipment number

from step 1 must be provided), Trigger outgoing transaction = 1.

Scenario 3 - Build shipment, WMS tells each carton, send later

• Step 1 - Create a shipment, WMS provides packing of first carton (or not, maybe just create

shipment), Trigger outgoing transaction = 0; Request Shipping Documents = yes; PA replies back

with shipment number

• Step 2 - Shipment update. Update carton contents of an existing carton. Important, must give

us back the shipment number that PortalApp provided in step 1.

• Step 3 - Shipment update. Add carton to this shipment. Important, must give us back the

shipment number that PortalApp provided in step 1.

• Step 4 - Shipment update. Delete carton from existing shipment. Important, must give us back

the shipment number that PortalApp provided in step 1.

• Step 5 - Shipment update. Add final tracking info and send ASN. Important, must give us back

the shipment number that PortalApp provided in step 1.Trigger outgoing transaction = 1.

For each Shipment update step, the third party application does not need to provide carton detail.

If carton detail is provided it will update those cartons. Carton numbers from step 1 must be

provided. If carton detail is sent again but carton number are not included, new (and possibly

duplicate) cartons will be created and added to your shipment and ASN.

Spring Systems Page 23 www.springsystems.com

Appendix II – Carton Numbering

Third party applications can provide carton numbers to PortalApp or this could be left blank and

PortalApp will generate a carton number. If PortalApp generates the carton number, however, the

third party application must store this number as it will be mandatory for processing an carton update

or delete procedure.

Third party applications that generate label numbers should follow the GS1 -128 standard convention. A

full explanation is provided below, but in summary:

• 19 digit number (normally the 20
th

 digit is a check digit number, but if you leave that off,

PortalApp will append it)

• Starts with 4 leading 0’s

• First half is the vendor’s GS1 prefix (see below)

• 2
nd

 half is a counter, NEVER repeat

The combination of the prefix and the counter makes these numbers globally unique.

If leading 0’sare not provided, PortalApp will add them back in. So a valid values would be:

• 0000111111012345678

• Or… 111111012345678

Red 1’s represent the vendor’s GS1 prefix, blue represents is the counter, incrementing for each label.

What is a GS1 prefix?

Given by the GS1. It is a 6-10 digit code that you use to assign a UPC-12 code to your products in order

for those products to be scanned/sold

How can I acquire a GS1 prefix? Go to the GS1 website and fill out the forms required

What is a GS1-128 / SSCC / SSCC-18 / Serial Shipping Container Code

The EAN.UCC System also defines a method of serializing cartons (Serial Shipping Container Code or

SSCC), so the contents can be traced to a specific line item (or items) on a specific purchase order. The

standard format for serializing cartons and shipping containers is an 18 digit number encoded in

UCC/EAN-128 symbology shown in the following illustration. This number is not generally added to the

box or container until the time of shipment.

Serial numbering of cartons provides unique identification. This is important, especially to identify

cartons containing variable quantities or non-standard mixtures of product and as a reference number

for EDI (Electronic Data Interchange) transactions. When used in conjunction with EDI, serial numbering

cartons and shipping containers eliminates the need to physically inspect the contents of every carton.

Spring Systems

Eliminating this procedure has improved the productivity of some warehouse receiving

100% or more!

The Serial Shipping Container Code (SSCC) is different from the EAN/UCC

packs and shipping containers of consumer units. The same EAN/UCC

packaging configurations of the same product. The Serial Shipping Container Code (SSCC) is a unique

number assigned to each carton as it is shipped. Because it is unique, it can be used as a reference

number tying the contents of a specific carton to information about the shipment in

order(s) it should be applied to, carrier, date of shipment, etc. It is used in conjunction with the EDI 856

Advance Shipping Notice (ASN).

The 18 digit number consists of the following items:

Page 24 www.springsystems.com

Eliminating this procedure has improved the productivity of some warehouse receiving

The Serial Shipping Container Code (SSCC) is different from the EAN/UCC-14 assigned to intermediate

packs and shipping containers of consumer units. The same EAN/UCC-14 is assigned to all identical

the same product. The Serial Shipping Container Code (SSCC) is a unique

number assigned to each carton as it is shipped. Because it is unique, it can be used as a reference

number tying the contents of a specific carton to information about the shipment including the purchase

order(s) it should be applied to, carrier, date of shipment, etc. It is used in conjunction with the EDI 856

The 18 digit number consists of the following items:

www.springsystems.com

Eliminating this procedure has improved the productivity of some warehouse receiving operations by

14 assigned to intermediate

14 is assigned to all identical

the same product. The Serial Shipping Container Code (SSCC) is a unique

number assigned to each carton as it is shipped. Because it is unique, it can be used as a reference

cluding the purchase

order(s) it should be applied to, carrier, date of shipment, etc. It is used in conjunction with the EDI 856

Spring Systems

Appendix III – API Response Codes
To ensure successful communication, the sending system must verify a successful API or web service

response code.

Example 1 - Postman tool displays a response code as follows:

Example 2 - This is how it looks like on raw api call, the code is in resp

code depends on the system that sent the request

Page 25 www.springsystems.com

API Response Codes
To ensure successful communication, the sending system must verify a successful API or web service

displays a response code as follows:

This is how it looks like on raw api call, the code is in response, how to find

code depends on the system that sent the request.

www.springsystems.com

To ensure successful communication, the sending system must verify a successful API or web service

onse, how to find and interpret the

